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Abstract—We have previously presented a regularized list mode
maximum likelihood reconstruction algorithm for the positron
emission tomograph that is being developed at our laboratory.
Here we will present a scatter correction method for this algorithm.
The mean scatter sinogram is estimated using a Monte Carlo sim-
ulation program. It is then incorporated into the forward model of
the reconstruction algorithm. With the assumption that the back-
ground activity is nearly uniform, the Monte Carlo scatter simu-
lation need only run once for each PEM configuration. This saves
computational time and makes the Monte Carlo scatter correction
viable in clinical situations. The propagation of the noise from the
estimated scatter sinogram into the reconstruction is theoretically
analyzed. The results provide an easy way to calculate the required
number of events in the Monte Carlo scatter simulation for a given
noise level in the image. The analysis is also applicable to other
scatter estimation methods provided that the covariance of the es-
timated scatter sinogram is available.

I. I NTRODUCTION

A rectangular positron emission tomograph (Fig. 1), dedi-
cated to imaging the human breast, is under development at our
Laboratory [1]. The tomograph consists of four banks of detec-
tor modules (two banks of 3×3 modules left and right and two
banks of 3×4 modules top and bottom). Each module consists
of an 8×8 array of 3mm×3mm×30mm lutetium oxyorthosili-
cate (LSO) crystals. The maximum field of view (FOV) of the
system is 96×72×72 mm3. For each crystal, the system dig-
itizes the depth of interaction (DOI) of the photon with three
bits. Each detector is placed in coincidence with all detectors in
the other three banks, giving rise to 172 million possible lines of
response (LORs). The system operates exclusively in fully 3D
mode.

The data from the new tomograph is stored in list mode format
because the total number of detections will generally be far less
than the total number of LORs. We have developed a list mode
likelihood reconstruction algorithm for the tomograph [2]. The
DOI information was explicitly modeled in the forward projec-
tion for each LOR.

Here we present a scatter correction method for the list mode
likelihood reconstruction algorithm. The scatter sinogram is es-
timated using a Monte Carlo simulation program. The results
are then incorporated in the forward model of the reconstruction
algorithm. For breast imaging with F-18-labeled deoxyglucose
(FDG), we can assume that the FOV is filled with uniform ac-
tivity and that features such as cancerous lesions account for a
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Fig. 1. PEM Geometry.

small fraction of the radioactivity, so we only need to run the
Monte Carlo scatter simulation once for each system configu-
ration. For each data set, we can scale the scatter sinogram by
the ratio of the total events between the Monte Carlo simula-
tion and the data set, assuming the scatter profiles are the same.
This saves a large amount of computation time. We also theo-
retically analyzed the noise propagation from the Monte Carlo
scatter sinogram into the reconstructed image. Such analysis
is also useful in determining the total number of events that is
required for the Monte Carlo scatter simulation. Using Monte
Carlo simulation to estimate scatter sinogram is not a new idea.
It is, however, the application of the method to the PEM recon-
struction and the theoretical analysis of the noise propagation
that make this paper novel.

II. T HEORY

A. List Mode Likelihood Reconstruction with Scatter Correc-
tion

Histogrammed PET data are generally modeled as a collec-
tion of independent Poisson random variables. By treating the
detections in each LOR separately, we can derive the appropri-
ate log-likelihood function for list mode data [2]:

L(x) =
K∑

k=1

log


 N∑

j=1

p(ik, j)xj + sik


 −

N∑
j=1

εjxj , (1)



wherexj is mean activity inside thejth voxel of the unknown
image,p(i, j) is the probability of detecting an event from the
jth voxel in theith LOR, si is the mean scatter in theith LOR,
ik is the index of the LOR of thekth detection,εj ≡ ∑

i p(i, j),
K is the total number of detections, andN is the total number
of image voxels.

The maximum likelihood (ML) estimate can be found by
maximizing (1). A popular ML algorithm for PET reconstruc-
tion is the expectation maximization (EM) algorithm [3], [4],
[5]. However, the ML solution is unstable (i.e. noisy) because of
the ill-conditioness of tomography systems. Hence some form
of regularization (or prior function) is needed to reconstruct a
reasonable image. The prior function used in [2] is a Gaussian
prior whose logarithm is of the form

βU(x) =
β

2
(x − m)′R(x − m), (2)

whereβ is the smoothing parameter,m is the estimated mean
of the unknown image,R is a positive definite (or semidefinite)
matrix.

Combining the likelihood function (1) and the image prior
(2), the reconstruction is found as:

x̂ = arg max
x≥0

[L(x) − βU(x)] . (3)

For further simplification,R is chosen to be a diagonal ma-
trix, so the EM algorithm can be used to solve (3). The EM
update equation is [2]
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,

whererjj is the(j, j)th element ofR.

B. Estimate Mean Scatter Sinogram using Monte Carlo Simu-
lation

The scatter correction method described in the previous sec-
tion requires the mean scatter sinogram being known before the
reconstruction starts. For conventional PET systems, a scatter
sinogram can be estimated by single scatter simulation, decon-
volution of emission sinogram, dual energy windows, or Monte
Carlo methods. Most analytical scatter estimation methods re-
quire fitting an computed scatter sinogram to the tails of the
emission sinogram that consist of pure scatter events. This is
not practical for PEM geometry as the whole FOV is filled with
activity. Therefore, we adopt the Monte Carlo method here.

The Monte Carlo scatter simulation requires both emission
and attenuation maps. Generally they are obtained from an ini-
tial reconstruction without scatter correction. One advantage of
breast imaging with FDG is that the background is quite uni-
form. If we assume that whole FOV is filled with uniform ac-
tivity and that features such as cancerous lesions account for
a small fraction of the radioactivity, then we only need to run
the Monte Carlo simulation once for each system configuration.
This will saves a large amount of computational time.

The Monte Carlo simulation program estimates the scatter
sinogram by tracing all 511 keV photon pairs randomly gen-
erated inside the FOV. For each photon, it first computes the
interaction point based on the attenuation length. Then, it deter-
mines whether it is a photo-electric or Compton interaction. If it
is photo-electric, it dumps all of its current energy; if it is Comp-
ton, it computes the energy deposited and the new direction of
the photon using the Klein-Nishima formula, and continues to
trace the photon until the photon has dumped all its energy or
traveled outside of the system. A photon is detected when the
energy deposited at one detector is greater than a preselected
threshold. A coincidence event is recorded if both photons are
detected. The Monte Carlo simulation program histograms sep-
arately the scattered and unscattered (true) events.

For each individual data set, the scatter sinogram is then esti-
mated by

ŝi =
total events in the data

total events in Monte Carlo Simulation
sMC

i , (4)

wheresMC
i is the number of scatter events in theith LOR in

the Monte Carlo simulation. This assumes the scatter fraction
and profile in each data set are the same, as most scatters are
generated from the uniform background.

C. Noise Propagation

Noise is inevitable in the Monte Carlo scatter sinogram. Be-
cause the Poisson nature of the counting process, the longer it
runs, the less the noise is. This presents a trade off between time
and accuracy. In this section, we analyze how the noise in the
scatter sinogram propagates into the reconstruction.

We denote the MAP reconstruction in (3) asx̂(y, ŝ) to indi-
cate that̂x is dependent on estimated scatter sinogramŝ. Since
y andŝ are independent, we first focus on noise fromŝ and as-
sumey noisefree (i.e.y = ȳ = Px + s). We can approximate
x̂(y, ŝ) using a first order Taylor series expansion at the point
ŝ = s:

x̂(y, ŝ) ≈ x̂(y, s) + ∇sx̂(y, s)(ŝ − s). (5)

This approximation is similar to that presented in [6]. From (5),
we have the following expression for the covariance of noise in
the reconstruction caused by the noise in the estimated scatter
sinogram

Σ(x̂) ≈ ∇sx̂(y, s)Σ(ŝ)[∇sx̂(y, s)]′ (6)

whereΣ(ŝ) is the covariance matrix of the estimated scatter
sinogram.

To compute∇sx̂(y, s), we follow the idea presented in [6].
We restrict our attention to the situations where the solution of
(3) satisfies

0 =
∂

∂xj
[L(y|x, s) − βU(x)]

∣∣∣x=x̂(y,s), j = 1, . . . , M.

(7)
While this assumption precludes inequality constraints, it should
work fine here because of the uniform background. Differentiat-
ing (7) with respect tosi by applying the chain rule and solving



the resulting equation, we get [6]

∇sx̂(y, s) =
{
−∇xx [L(y|x, s) − βU(x)] |x=x̂(y,s)

}−1

∇xs [L(y|x, s) − βU(x)] |x=x̂(y,s) (8)

where the(j, k)th element of the operator∇xx is ∂2

∂xj∂xk
, and

the(j, l)th element of the operator∇xs is ∂2

∂xj∂sl
.

From (1) and (2), we can derive

∇xx [L(y|x, s) − βU(x)]

= P ′ diag
[

yi

(P x̂+s+r)2
i

]
P + βR

and

∇xs [L(y|x, s) − βU(x)] = P ′ diag
[ −yi

(P x̂ + s)2i

]
.

Then

∇sx̂(y, s) =
{

P ′ diag
[

yi

(P x̂ + s + r)2i

]
P + βR

}−1

P ′ diag
[

yi

(P x̂ + s)2i

]
. (9)

Substituting (9) into (6) results in

Σ(x̂) ≈
{

P ′ diag
[

yi

(P x̂ + s + r)2i

]
P + βR

}−1

P ′ diag
[

yi

(P x̂ + s)2i

]
Σŝ diag

[
yi

(P x̂ + s)2i

]
P

{
P ′ diag

[
yi

(P x̂ + s + r)2i

]
P + βR

}−1

(10)

In general,̂x is a slightly blurred version ofx, so the projec-
tion P x̂ + s is approximately equal to the mean of the data,ȳ.
Therefore, we can simplify the above expression to

Σ(x̂) ≈ [F + βR]−1P ′ diag

[
σ2

ŝi

ȳ2
i

]
P [F + βR]−1, (11)

whereF = P ′ diag
[

1
ȳi

]
P is the Fisher information matrix

andσŝi
is the variance of̂si. Eq. (11) is the covariance matrix

of the noise in the reconstruction that is propagated from the
estimated scatter sinogram.

The covariance of noise in the reconstruction caused by the
Poisson noise in the data is [6]

ΣPoisson(x̂) ≈ ∇yx̂(ȳ)Cov(y)[∇yx̂(ȳ)]′

≈ [F + βR]−1F [F + βR]−1. (12)

Adding (11) and (12), we get the covariance of the total noise

Σtotal(x̂) = [F + βR]−1P ′ diag

[
σ2

ŝi

ȳ2
i

+
1
ȳi

]
P [F + βR]−1

(13)
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Fig. 2. (a) Reconstruction without scatter correction. (b) Reconstruction with
scatter correction. The images are top view slice (upper left), front view
slice (lower left), and side view slice (lower right) through the center voxel.
Images in (a) and (b) are individually scaled as indicated by the gray level
bars.

It shows that the noise from the scatter sinogram is equivalent
to an increase of the noise in the data by a factor of1 + σ2

ŝi
/ȳi.

σ2
ŝi

/ȳi is equal to the scatter fraction of theith LOR divided by
the ratio between total number of detection in the Monte Carlo
simulation and the total number of detection in the data. For
example, if the average scatter fraction is 30%, and the Monte
Carlo simulation has 30 times as many events as the data, then
the noise variance increase in reconstruction cause by the scatter
sinogram will be about 1%. Equation (13) can be used to deter-
mine the number of events required in the Monte Carlo simula-
tion and to design better simulation strategy.

III. SIMULATION RESULTS

In simulation we assume a subject weighing 70 kg and an in-
jection of 1 mCi of FDG, which is uniformly distributed within
the body. This activity density within the 72× 72 × 96 mm3

field of view and an imaging time of 60 s gives about 16 million
disintegrations within the imaging volume.

The Monte Carlo simulation uses the appropriate energy-
dependent cross sections for the interaction of photons in water



(in the field of view) and in LSO detector. The average detection
efficiency is about 13% for an energy threshold of 270 keV. Of
all the detected events, there are about 35% unscattered events,
32% events scattered in the FOV, and 33% events scattered in
the detector (not scattered in the FOV).

Fig. 2 shows some example reconstructions of a simulated
flood source with and without scatter correction. The images
shown are three orthogonal slices through the center voxel: top
view slice (upper left), front view slice (lower left), and side
view slice (lower right). The reconstructed image without scat-
ter correction (Fig. 2a) shows brighter at the center of FOV and
darker at the corners, especially in the front view slice. The
scatter corrected image (Fig. 2b) shows more uniform activity
distribution. Note the gray level maps in Fig. 2a and Fig. 2b are
different. Here we have only corrected for the scatters in the
FOV. We are looking for a better way to deconvolve the scatters
in the detector as they are more localized.

IV. CONCLUSION

We have implemented the Monte Carlo scatter correction
method for the list mode likelihood reconstruction algorithm
for the PEM and shown some results based on computer sim-
ulations. For breast imaging with FDG, we can assume that the
FOV is filled with uniform activity and that features such as can-
cerous lesions account for a small fraction of the radioactivity.
This specific application of PEM allows us to run the Monte
Carlo scatter simulation only once for each scanner configura-
tion. The scatter sinogram for each individual data set can then
be estimated using the total number of detections. This saves a
large amount of computation time.

We also theoretically analyzed the noise propagation from
the estimate scatter sinogram into the final reconstructed image.
The results show that the noise propagated from the estimated
scatter sinogram is equivalent to increasing the noise variance
in each LOR by a factor of1 + σ2

ŝi
/ȳi. If we assume the scatter

fraction for each LOR is the same, then this factor is a con-
stant for all LORs and it provides a easy way to calculate the
required number of events in the Monte Carlo scatter simulation
for a given noise level in reconstruction. This noise analysis is
applicable to other scatter estimation methods provided that an
estimate of the covariance of the estimated scatter sinogram is
available.
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